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Gauge Supergravities for All Odd Dimensions
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Recently proposed supergravity theories in odd dimensions whose fields are
connection one-forms for the minimal supersymmetric extensions of anti-de Sitter
gravity are discussed. Two essential ingredients are required for this construction:
(1) The superalgebras, which extend the adS algebra for different dimensions,
and (2) the Lagrangians, which are Chern±Simons (2n 2 1)-forms. The first
item completes the analysis of van Holten and Van Proeyen, which was valid
for N 5 1 only. The second ensures that the actions are invariant by construction
under the gauge supergroup and, in particular, under local supersymmetry. Thus,
unlike standard supergravity, the local supersymmetry algebra closes off-shell
and without requiring auxiliary fields. The superalgebras are constructed for all
dimensions and they fall into three families: osp(m | N ) for D 5 2, 3, 4, mod 8,
osp(N | m) for D 5 6, 7, 8, mod 8, and su(m 2 2, 2 | N ) for D 5 5 mod 4, with
m 5 2 [D /2]. The Lagrangian is constructed for D 5 5, 7, and 11. In all cases the
field content includes the vielbein (ea

m ), the spin connection ( v ab
m ), N gravitini

( c i
m ), and some extra bosonic ª matterº fields which vary from one dimension

to another.

1. INTRODUCTION

This is an expanded version of a recent paper [1] and lecture [2], where
most of the preliminary results were announced.

Three of the four fundamental forces of nature are consistently

described by Yang±Mills (YM) quantum theories. Gravity, the fourth

fundamental interaction, resists quantization in spite of several decades of

intensive research in this direction. This is intriguing in view of the fact
that general relativity (GR) and YM theories have a deep geometrical

nature based on the gauge principle. Why do two theories constructed on

almost the same mathematical foundation produce such radically different

physical behaviors? What is the obstruction to the application of the

1 Centro de Estudios CientõÂficos de Santiago, Santiago 9, Chile, and Departamento de FõÂsica,
Universidad de Santiago de Chile, Santiago 2, Chile.

1181

0020-7748/99/0400-118 1$16.00/0 q 1999 Plenum Publishing Corporation



1182 Troncoso and Zanelli

methods of YM quantum field theory to gravity? The final answer to

these questions is beyond the scope of this paper; however, one can note

a difference between YM and GR which might turn out to be an important
clue: YM theory is defined on a fiber bundle, with the connection as the

dynamical object, whereas the dynamical fields of GR cannot be interpreted

as components of a connection.

The closest one could get to a connection formulation for GR is the

Palatini formalism, with the Hilbert action

I[ v , e] 5 # e abcd Rab Ù ea Ù eb (1)

where Rab 5 d v ab 1 v a
c Ù v c

b is the curvature two-form. This action is some-

timesÐ mistakenlyÐ claimed to describe a gauge theory for local translations.

If v and e were the components of the PoincareÂconnection associated to

local translations, they should transform as

d v ab 5 0, d ea 5 D l a 5 d l a 1 v a
b Ù l b (2)

Invariance of (1) under (2) would require the torsion-free condition

T a 5 dea 1 v a
b Ù eb 5 0 (3)

which is an equation of motion for the action (1). This means that the

invariance of the action (1) under (4) does not result from the transformation

properties of the fields alone, but is a property of their dynamics as well.
The error stems from the identification between local translations in the

base manifold (diffeomorphisms)

x m ® x8 m 5 x m 1 z m (x) (4)

which is a genuine invariance of the action (1), and local translations in the

tangent space (2).

The torsion-free condition, being one of the field equations, implies that

local translational invariance is at best an on-shell symmetry, which would

probably not survive quantization.
Since the invariance of the Hilbert action under general coordinate

transformations (4) is reflected in the closure of the first-class Hamiltonian

constraints in the Dirac formalism, one could try to push the analogy between

the Hamiltonian constraints H m and the generators of a gauge algebra. How-

ever, the fact that the constraint algebra requires structure functions, which
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depend on the dynamical fields, is another indication that the generators of

diffeomorphism invariance of the theory do not form a Lie algebra, but an

open algebra (see, e.g., ref. 3).
More precisely, the subalgebra of spatial diffeophisms is a genuine Lie

algebra in the sense that its structure constants are independent of the dynami-

cal fields of gravitation,

[H i , H8j ] , H8j d | i 2 H8i d | j (5)

whereas the generators of timelike diffeomorphisms are the offending ones:

they form an open algebra,

[H ’ , H8’ ] , gijH8j d | i (6)

This comment is particularly appropriate in a CS theory, where spatial

diffeomorphisms are always part of the true gauge symmetries of the theory.

The generators of timelike displacements (H ’ ), on the other hand, are combi-

nations of the internal gauge generators and the generators of spatial diffeo-
morphism, and therefore do not generate independent symmetries [4].

2. SUPERGRAVITY

For some time it was hoped that the nonrenormalizability of GR could

be cured by supersymmetry. However, the initial glamor of supergravity

(SUGRA) as a mechanism for taming the wild ultraviolet divergences of

pure gravity was eventually spoiled by the realization that it, too, would lead

to a nonrenormalizable answer. Again, one can see that SUGRA is not a
gauge theory in the sense of a fiber bundle and that the local symmetry

algebra closes naturally only on shell. The algebra can be made to close off

shell at the cost of introducing auxiliary fields, but they are not guaranteed

to exist for all D and N [5].

Whether the lack of fiber bundle structure is the ultimate reason for the

nonrenormal izability of gravity remains to be proven. However, it is certainly
true that if GR could be formulated as a gauge theory, the chances of proving

its renormalizability would clearly grow. In three spacetime dimensions both

GR and SUGRA define renormalizable quantum theories. It is strongly sug-

gestive that precisely in this case both theories can also be formulated as

gauge theories on a fiber bundle [6]. It might seem that the exact solvability

miracle was due to the absence of propagating degrees of freedom in three-
dimensional gravity, but the key ingredient of the miracle can be traced to

the fiber bundle structure of the Chern±Simons (CS) form of those systems.

There are other known examples of gravitation theories in odd dimen-

sions which are genuine (off-shell) gauge theories for the anti-de Sitter (adS)
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or PoincareÂgroups [7±10]. These theories, as well as their supersymmetric

extensions, have propagating degrees of freedom [4] and are CS systems for

the corresponding groups as shown in ref. 11.

2.1. From Rigid Supersymmetry to Supergravity

Rigid SUSY can be understood as an extension of the PoincareÂ

algebra by including supercharges which are the ª square rootsº of the

generators of rigid translations, {QÅ , Q} , G ? P. Roughly speaking, the

traditional strategy to generalize this idea to local SUSY was to substitute

the momentum P m 5 i - m by the generators of diffeomorphisms, {QÅ , Q} ,
G ? *. The resulting theory has an on-shell local supersymmetry algebra.

An alternative point of viewÐ which is the one we advocate hereÐ is
to construct the supersymmetry on the tangent space and not on the base

manifold. This approach is more natural if one recalls that spinors provide

a basis of irreducible representations for SO(N ), and not for GL(N ). Thus,

spinors are naturally defined relative to a local frame on the tangent space

rather than in the coordinate basis. This idea has been successfully applied

by Chamseddine in five dimensions [8], and by us for pure gravity [9,
10] and in supergravity [1, 11]. The basic point is to replicate the 2 1
1 ª miracleº in higher dimensions. The construction has been carried out

for spacetimes whose tangent space has adS symmetry in ref. 1, and for

its PoincareÂcontraction in ref. 11.

In ref. 11 a family of theories in odd dimensions, invariant under
the supertranslation algebra whose bosonic sector contains the PoincareÂ

generators, was presented. The anticommutator of the supersymmetry

generators gives a translation plus a tensorial ª centralº extension,

{Q a , QÅ
b } 5 2 i( G a ) a

b P a 2 i( G abcde) a
b Zabcde (7)

The commutators of Q, QÅ , and Z with the Lorentz generators can be read

off from their tensorial character. All the remaining commutators vanish.

This algebra is the continuation to all odd-dimensional spacetimes of the

D 5 10 superalgebra of ref. 12 and yields supersymmetric theories with off-

shell PoincareÂsuperalgebra. The existence of these theories suggests that
there should be similar supergravities based on the adS algebra.

2.2. Assumptions of Standard Supergravity

Three implicit assumptions are usually made in the construction of

standard SUGRA:

(i) The fermionic and bosonic fields in the Lagrangian should come in

combinations such that their propagating degrees of freedom are equal in
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number. This is usually achieved by adding to the graviton and the gravitini

a number of lower spin fields (s , 3/2) [13]. This matching, however, is

not necessarily true in adS space, nor in Minkowski space if a different
representation of the PoincareÂgroup (e.g., the adjoint representation) is

used [14].

The other two assumptions concern the purely gravitational sector. They

are as old as general relativity itself and are dictated by economy: (ii) Gravi-

tons are described by the Hilbert action (plus a possible cosmological con-

stant), and (iii) the spin connection and the vielbein are not independent fields,
but are related through the torsion equation. The fact that the supergravity

generators do not form a closed off-shell algebra can be traced back to

these asumptions.

The procedure behind (i) is tightly linked to the idea that the fields

should be in a vector representation of the PoincareÂgroup [14] and that the

kinetic terms and couplings are such that the counting of degrees of freedom
works as in a minimally coupled gauge theory. This assumption comes from

the interpretation of supersymmetric states as represented by the in and

out plane waves in an asymptotically free, weakly interacting theory in a

Minkowskian background. These conditions are not necessarily met for a CS

theory in an asymptotically adS background. Apart from the difference in
background, which requires a careful treatment of the unitary irreducible

representations of the asymptotic symmetries [15], the counting of degrees

of freedom in CS theories is completely different from the one for the same

connection one-forms in a YM theory.

2.3. Lanczos ± Lovelock Gravity

For D . 4, assumption (ii) is an unnecessary restriction in the

available theories of gravitation. In fact, the most general action for

gravityÐ generally covariant and with second-order field equations for the

metricÐ is a polynomial of degree [D/2] in the curvature, first discussed

by Lanczos [16] for D 5 5 and, in general, by Lovelock [17, 18]. This
action contains the same degrees of freedom as the Hilbert action [19]

and is the most general low-energy effective theory of gravity derived

from string theory [20].

The Lanczos±Lovelock (LL) theory contains as a particular case the

Einstein±Hilbert (EH) theory, but they are in general dynamically quite

different. The classical solutions of the LL theory are not perturbatively
related to those of Einstein’ s theory. For instance, it was observed that

the time evolution of the classical solutions in the LL theory starting

from a generic initial state can be unpredictable, whereas the EH theory

defines a well-posed Cauchy problem [19, 21]. Moreover, the LL theory
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has a large number of dimensional constants in contrast with the two

constants of the EH action (g and L ) [22, 23, 9]). This last feature would

seem to indicate that renormalizability would be even more remote for
the LL theory than in ordinary gravity.

However, there is an exceptional case when all the constants of the

LL action are related to each other in a particular way (see next section).

The resulting system exhibits a larger symmetry; the theory can be

formulated in terms of a dimensionless connection 1-form and a unique

dimensionless constant which is also quantized [10]. In this case, the LL
theory becomes a CS system in which the spin connection and the vielbein

are parts of an adS connection. A particular case of this occurs naturally

in 2 1 1 dimensions in the presence of a cosmological constant. This is

the secret behind the integrability of gravity in 2 1 1 dimensions as

demonstrated in ref. 6.

2.4. Torsion

Assumption (iii) implies that torsion does not contain independently

propagating degrees of freedom, and its equations are identities enforced by

fiat on the fields. This is the essence of the metric approach to GR in which

parallel transport and distance are not independent notions, but are related

through the Christoffel symbols. There is no natural justification for this
assumption and it was the leitmotif of the historic discussion between Einstein

and Cartan [24].

In four dimensions if e and v are varied independently in the action

(1), the equation for v implies T a 5 0 (in the absence of matter). This might

seem sufficient to justify asumption (iii) since the equation for v is algebraic

and could in principle be used to express v in terms of the remaining fields.
However, it is not always possible to solve this algebraic equation for v if

D . 4.

Another serious consequence of the torsion-free conditions is that the

dynamical dependence between v and e introduced by (3) spoils the possibility

of interpreting the local translational invariance as a gauge symmetry of the

action. Indeed, taking the condition T a 5 0 as a definition would imply

d v ab 5
d v ab

d ec d ec Þ 0 (8)

in contrast with (2). Thus, the spin connection and the vielbein cannot be

identified as the compensating fields for local Lorentz rotations and transla-

tions, respectively, as can be done in D 5 3. Thus, general relativity in D 5
2n $ 4 cannot be formulated purely as a gauge theory on a fiber bundle.
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In our construction [1, 11] v and e are assumed to be dynamically

independent and thus torsion necessarily contains propagating degrees of

freedom, represented by the contorsion tensor kab
m : 5 v ab

m 2 v Å ab
m (e, . . .),

where v Å is the spin connection which solves the classical torsion equation

in terms of the remaining fields.

3. GAUGE GRAVITY AND GAUGE SUPERGRAVITY

3.1 Chern ± Simons Gravity in 2n 2 1 Dimensions

For D 5 2n 2 1, the particular choice of the LL Lagrangian reads

LadS
G,2n 2 1 5 o

n 2 1

p 5 0

a p L p (9)

where

L p
G 5 e a1...aD Ra1a2 . . . Ra2p 2 1a2pea2p 1 1 . . . eaD (10)

Here the wedge product is understood and the subscript G stands for ª torsion-

free gravity.º We note that although torsion does not explicitly enter in (10),

for D $ 5 this system has propagating torsion.

If one chooses a p 5 k (D 2 2p) 2 1(
n 2 1

p
)l 2p 2 D, the invariance of (9) under

the Lorentz group extends to the adS group. The constant l has dimensions

of length and its purpose is to render the action dimensionless, allowing the

interpretation of v and e as components of the adS connection [23];

WAB 5 F v ab ea/l

2 eb/l 0 G (11)

where A, B 5 1, . . . , D 1 1. The resulting Lagrangian is an adS-CS form
in the sense that its exterior derivative is the Euler form in 2n dimensions

[8, 9, 23],

dLadS
G,2n 2 1 5 k e A1...A2n RA1A2 . . . RA2n 2 1A2n (12)

where RAB is the adS curvature and k is quantized [10] (in the following we

will set k 5 l 5 1).

Apart from the Euler-CS form discussed above, there are the standard
CS (2p 2 1)-forms L*2p 2 1 related to the pth Chern character for the

Lorentz connection,

dL*2p 2 1( v a
b) 5 cp (13)

where cp 5 : Tr[(Ra
b)

p].
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In general, a Chern±Simons D-form is defined by the condition that its

exterior derivative be an invariant homogeneous polynomial of degree n in

the curvature, that is, a characteristic class. In the examples above, (12) is
the CS form for the Euler class 2n-form, while the exotic Lagrangians are

related to different combinations of Chern characters (see Appendix A).

Thus, a generic CS action in 2n 2 1 dimensions for a Lie algebra g
can be written as

dL
g
2n 2 1 5 ^ Fn & (14)

where ^ ? & stands for a multilinear function in the Lie algebra g, invariant

under cyclic permutations such as Tr, for an ordinary Lie algebra, or STr, in

the case of a superalgebra. For D 5 3 the ª exotic gravityº Lagrangian

LadS
T,3 5 v a

bd v b
a 1

2

3
v a

b v b
c v c

a 1 2eaT
a (15)

is a CS form for the adS group SO(4)2, whose exterior derivative is the
Pontryagin form in four dimensions [Second Chern character for SO(4)][6],

dLadS
T,3 5 RA

B RB
A (16)

where RA
B is the Riemann curvature 2-form in four dimensions.

Similar exotic actions associated to the Chern characters in 4k dimensions

exist in D 5 4k 2 1 [25]. The gravitational Chern characters vanish for p 5
2n 1 1 (the trace of product of an odd number of Riemann curvatures

vanishes) [26], hence there are no adS CS Lagrangians in D 5 4k 1 1. For

D 5 4k 2 1, the number of possible exotic forms grows as the partitions of

k, in correspondence with the number of composite Chern invariants of the
form P i cpi, with S i pi 5 4k. Out of all these forms, we will be interested in

particular combinations of them which, in the spinorial representation of

SO(4k), can be written as [1]

dLadS
T,4k 2 1 5 2 Tr F 1 1

4
RAB G AB 2

2k G (17)

It is important to note that in this Lagrangian, as well as in (16), torsion

appears explicitly. For example, in seven dimensions one finds

LadS
T,7 5 L*7 ( v ) 2 3±4 (Ra

b Rb
a 1 2[T aTa 2 Rabeae

b])L*3 ( v )

2 ( 3±2 Ra
b Rb

a 1 2T aTa 2 4Rabeaeb)T
aea 1 4TaR

a
b Rb

ae
c

2 For simplicity we will not distinguish between different signatures. Thus, the adS algebra in
D dimensions will be denoted as so(D 1 1).
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In eight dimensions there are four topological invariants [27], which give

rise to four corresponding CS forms in seven dimensions. LadS
T,7 is a particular

linear combination of those CS forms. For further discussion on these invari-
ants, see refs. 25 and 27.

If one allows the presence of torsion explicitly, the maximal extension

of the LL Lagrangian is found. This is the most general D-form invariant under

local Lorentz rotations constructed out of the vielbein, the spin connection, and

their derivatives (without using the metric) [26]. The Lagrangian (17) is a

particular representative of this family in which the coefficients are chosen
so as to make the action locally invariant under the adS group SO(D 1 1) [25].

The exterior derivative of a possible CS Lagrangian for a given group

in D 5 2n 2 1 dimensions has the form ga1...an F a1 . . . F an, where ga1...an is

an invariant tensor of the algebra. Thus, the problem of finding all possible

CS Lagrangians is equivalent to finding all possible invariant tensors of rank

n in the Lie algebra. This is in general an open problem, related to the number
of Casimir invariants for a given Lie group. For the groups relevant for

supergravity discussed below, like OSp(32 | 1), the number of invariant tensors

can be rather large. Most of these invariants would give rise to bizarre

Lagrangians and the real problem is to find the appropriate invariants that

describe sensible theories.
The R.H.S. of (17) is a particular form of (14) where ^ ? & is the ordinary

trace over spinor indices. Other possibilities of the form ^ Fn 2 p & ^ Fp & are not

used in our construction as they would not lead to the minimal supersymmetric

extensions of adS containing the Hilbert action. In the supergravity theories

discussed below, the gravitational sector is given by

6
1

2n LadS
G,2n 2 1 2

1

2
LadS

T,2n 2 1

The 6 sign corresponds to the two choices of inequivalent representations

of G ’ s, which in turn reflect the two chiral representations in D 1 1. As in

the three-dimensional case, the supersymmetric extensions of LG or any of

the exotic Lagrangians such as L T require using both chiralities, thus doubling
the algebras. Here we choose the 1 sign, which gives the minimal superexten-

sion [25].

The bosonic theory outlined above is our starting point. The idea now

is to construct its supersymmetric extension. A possible approach would be

to study the superalgebras containing anti-de Sitter as a subalgebra, define

a connectionÐ in the adjoint representationÐ and construct the CS form with
it. This construction must clearly give the right result, but it would be rather

difficult to proceed formally without an explicit representation. Knowing

this, we take a less formal path, expressing the adjoint representation in terms

of the Dirac matrices of the appropriate dimension. This is not a wild guess
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because the generators of the Dirac algebra {I, G a, G ab, . . . } constituting a

basis for all square matrices. The advantage of this approach is that it provides

an explicit representation of the algebra and writing the Lagrangians is
straightforward.

3.2 Gauge Supergravity

The supersymmetric extensions of the adS algebras in D 5 2, 3, 4, mod
8, were studied by van Holten and Van Proeyen [12]. They added one

Majorana supersymmetry generator to the adS algebra and found all the N 5
1 extensions demanding closure of the full superalgebra. In spite of the fact

that the algebra for N 5 1 adS supergravity in 11 dimensions was conjectured

in 1978 to be osp(32 | 1) by Cremer et al. [28], and this was confirmed in [12],
nobody constructed a supergravity action for this algebra in the intervening 20

years. One reason for the lack of interest in the problem might have been

the fact that the osp(32 | 1) algebra contains generators which are Lorentz

tensors of rank higher than two.

Apart from the assumptions mentioned above, supergravity algebras

were traditionally limited to generators which are Lorentz tensors up to second
rank. This constraint was based on the observation that elementary particle

states of spin higher than two would be inconsistent [29]. However, this does

not rule out the relevance of those tensor generators in theories of extended

objects [30]. In fact, it is quite common nowadays to find algebras like the

M-brane superalgebra [31, 32],

{Q, QÅ } , G aPa 1 G abZab 1 G abcdeZabcde (18)

4. SUPERALGEBRA AND CONNECTION

The smallest superalgebra containing the adS algebra in the bosonic

sector is found following the same approach as in ref. 12, but lifting the

restriction of N 5 1 [25]. The result, for odd D . 3, is given in Table I (see

Appendix B).

Table I

S- Conjugation Internal

D Algebra matrix metric

8k 2 1 osp(N | m) C T 5 C uT 5 2 u

8k 1 3 osp(m | N ) C T 5 2 C uT 5 u

4k 1 1 su(m | N ) C ² 5 C u ² 5 u
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In each of these cases, m 5 2[D/2] and the connection takes the form

A 5
1

2
v abJab 1 eaJa 1

1

r!
b[r]Z [r]

1
1

2
( c iQ i 2 QÅ i c i) 1

1

2
aij M ij (19)

The generators Jab, Ja span the adS algebra, Qi
a generate (extended)

supersymmetry transformations, and [r] denotes a set of r antisymmetrized

Lorentz indices. The Q’ s transform as vectors under the action of M ij and as

spinors under the Lorentz group. Finally, the Z’ s complete the extension of

adS into the larger algebras so(m), sp(m), or su(m).

In (19) c i 5 c T
j Cu ji( c i 5 c ²

j Cu ji for D 5 4k 1 1), where C and u are
given in Table I. These algebras admit (m 1 N ) 3 (m 1 N ) matrix representa-

tions [48], where the J and Z have entries in the m 3 m block, the M ij in

the N 3 N block, while the fermionic generators Q have entries in the

complementary off-diagonal blocks.

Under a gauge transformation, A transforms by d A 5 ¹ l , where ¹ is

the covariant derivative for the same connection A. In particular, under a
supersymmetry transformation, l 5 e iQ i 2 QÅ i e i , and

d e A 5 F e k c k 2 c k e k D e j

2 D e i e i c j 2 c i e j G (20)

where D is the covariant derivative on the bosonic connection,

D e j 5 1 d 1
1

2 F ea G a 1
1

2
v ab G ab 1

1

r!
b[r] G [r] G 2 e j 2 ai

j e i.

4.1. D 5 5 Supergravity

In this case, as in every dimension D 5 4k 1 1, there is no torsional

Lagrangian LT due to the vanishing of the Pontryagin 4k 1 2-forms for the
Riemann curvature. This fact implies that the local supersymmetric extension

will be of the form L 5 LG 1 . . . .

As shown in Table I, the appropriate adS superalgebra in five dimensions

is su(2, 2 | N ), whose generators are K, Ja , Jab, Q a , QÅ
b , M ij, with a, b 5 1,

. . . , 5 and i, j 5 1, . . . , N. The connection is A 5 bK 1 eaJa 1 1±2 v abJab

1 aijM
ij 1 c iQi 2 QÅ j c j , so that in the adjoint representation

A 5 F V a
b c a

j

2 c i
b Ai

j G (21)

with V a
b 5 1/2( i±2 bI 1 ea G a 1 v ab G ab)

a
b , Ai

j 5 (i/N ) d i
j b 1 ai

j, and c i
b 5

c ² a jG a b . Here G is the Dirac conjugate (e.g., G 5 i G 0). The curvature is
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F 5 F RÅ ab D c a
j

2 D c i
b FÅ i

j G (22)

where

D c a
j 5 d c a

j 1 V a
b c b

j 2 Ai
j c a

i

RÅ ab 5 R a
b 2 c a

i c i
b (23)

FÅ i
j 5 F i

j 2 c i
b c b

j

Here F i
j 5 dA i

j 1 Ai
k Ak

j 1 (i/N )db d i
j is the su(N ) curvature, and R a

b 5
d V a

b 1 V a
s V s

b is the u(2,2) curvature. In terms of the standard (2n 2 1)-

dimensional fields, R a
b can be written as

R a
b 5

i

4
db d a

b 1
1

2
[T a G a 1 (Rab 1 eaeb) G ab] a

b (24)

In six dimensions the only invariant form is

P 5 iStr[F3] (25)

which in this case reads

P 5 Tr[R3] 2 Tr[F 3]

1 3[D c (RÅ 1 FÅ )D c 2 c (R2 2 F 2 1 [R 2 F ]( c )2) c ] (26)

where ( c )2 5 c c . The resulting five-dimensional CS density can be descom-

posed as a sum of a gravitational part, a b-dependent piece, an su(N ) gauge
part, and a fermionic term,

L 5 LadS
G 1 Lb 1 LSU(N) 1 LF (27)

with

LadS
G 5

1

8
e abcde 1 RabRcdee 1

2

3
Rabecedee 1

1

5
eaebecedee 2

Lb 5 2 1 1

N 2 2
1

42 2 (db)2b 2
3

2 1 T aTa 2 Rabea eb 2
1

2
RabRab 2 b 1

3

N
bf i

j f
j
i

LSU(N) 5 2 1 ai
j daj

k dak
i 1

3

2
ai

ja
j
k ak

l dal
i 1

3

5
ai

ja
i
k ak

l al
mam

i 2
LF 5 3[ c (R 1 F)D c 2 ( c )2( c D c )] (28)

The action is invariant under local gauge transformations, which contain

the local SUSY transformations
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d ea 5 2
1

2
( e i G a c i 2 c i G a e i)

d v ab 5
1

4
( e i G ab c j 2 c i G ab e i)

d b 5 i( e i c i 2 c i e i (29)

d c i 5 D e i)

d c i 5 D e i

d ai
j 5 i( e i c j 2 c i e j)

As in 2 1 1 dimensions, the PoincareÂsupergravity theory is recovered

contracting the super adS group. Consider the following rescaling of the fields:

ea ®
1

a
ea

v ab ® v ab

b ®
1

3 a
b (30)

c i ®
1

! a
c i

c i ®
1

! a
c i

ai
j ® ai

j

Then, if the gravitational constant is also rescaled as k ® a k , in the limit

a ® ` the action becomes that in ref. 11, plus an su(N ) CS form,

I 5
1

8 # [ e abcde Rab Rcdea 2 Rab Rabb

2 2Rab( c i G ab D c i 1 D c i G ab c i) 1 Lsu(N )] (31)

The rescaling (30) induces a contraction of the super adS algebra su(m | N )

into [Super PoincareÂ] ^ su(N ), where the second factor is an automorphism.

4.2. D 5 7 Supergravity

The smallest adS superalgebra in seven dimensions is osp(2 | 8). The

connection (19) is A 5 1±2 v abJab 1 eaJa 1 QÅ i c i 1 1±2 aijM
ij, where M ij are the

generators of sp(2). In the representation given above, the bracket ^ ? & is the
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supertrace and, in terms of the component fields appearing in the connection,

the CS form is

L osp(2 | 8)
7 (A) 5 2 2 4LadS

G,7( v , e) 2
1

2
L adS

T,7 ( v , e)

2 L *Sp(2)
7 (a) 1 LF ( c , v , e, a) (32)

Here the fermionic Lagrangian is

LF 5 4 c j(R2 d i
j 1 Rf i

j 1 ( f 2)i
j)D c i

1 4( c i c j)[( c j c k)( c kD c i) 2 c j(R d k
i 1 f k

i )D c k]

2 2( c iD c j)[ c j(R d k
i 1 f k

i ) c k 1 D c jD c i]

where f i
j 5 dai

j 1 ai
ka

k
j , and R 5 1±4 (Rab 1 eaeb) G ab 1 1±2 T a G a are the sp(2) and

so(8) curvatures, respectively. The supersymmetry transformations (20) read

d ea 5
1

2
e Å i G a c i, d v ab 5 2

1

2
e Å i G ab c i

d c i 5 D e i, d ai
j 5 e Å i c j 2 c Å i e j

Standard seven-dimensional supergravity is an N 5 2 theory (its maximal

extension is N 5 4), whose gravitational sector is given by the Einstein±

Hilbert action with cosmological constant and with an osp(2 | 8)-invariant
background [33, 34]. In the case presented here, the extension to larger N is

straightforward: the index i is allowed to run from 2 to 2s, and the Lagrangian

is a CS form for osp(2s | 8).

4.3. D 5 11 Supergravity

In this case, the smallest adS superalgebra is osp(32 | 1) and the connection

is A 5 (1/2) v abJab 1 eaJa 1 (1/5!)babcdeJabcde 1 QÅ c , where b is a totally

antisymmetric fifth-rank Lorentz tensor one-form. Now, in terms of the ele-

mentary bosonic and fermionic fields, the CS form in (14) reads

Losp(32 | 1)
11 (A) 5 Lsp(32)

11 ( V ) 1 LF ( V , c ) (33)

where

V [
1

2 1 ea G a 1
1

2
v ab G ab 1

1

5!
babcde G abcde 2

is an sp(32) connection. The bosonic part of (33) can be written as

Lsp(32)
11 ( V ) 5 2 2 6LadS

G,11( v , e) 2
1

2
LadS

T,11( v , e) 1 Lb
11(b, v , e)
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The fermionic Lagrangian is

LF 5 6( c Å R4D c ) 2 3[(D c Å D c ) 1 ( c Å R c )]( c Å R2D c )

2 3[( c Å R3 c ) 1 (D c Å R2D c )]( c Å D c )

1 2[(D c Å D c )2 1 ( c Å R c )2 1 ( c Å R c )(D c Å D c )]( c Å D c )

where R 5 d V 1 V 2 is the sp(32) curvature. The supersymmetry transforma-

tions (20) read

d ea 5
1

8
e Å G a c , d v ab 5 2

1

8
e Å G ab c

d c 5 D e , d babcde 5
1

8
e Å G abcde c .

Standard 11-dimensional supergravity [28] is an N 5 1 supersymmetric

extension of Einstein±Hilbert gravity that cannot accommodate a cosmologi-
cal constant [35, 36]. An N . 1 extension of this theory is not known. In

our case, the cosmological constant is necessarily nonzero by construction

and the extension simply requires including an internal so(N ) gauge field

coupled to the fermions, and the resulting Lagrangian is an osp(32 | N ) CS

form [25].

5. DISCUSSION

The supergravities presented here have two distinctive features: The

fundamental field is always the connection A and, in their simplest form,

these are pure CS systems (matter couplings are discussed below). As a result,

these theories possess a larger gravitational sector, including propagating spin

connection. Contrary to what one could expect, the geometrical interpretation
is quite clear, the field structure is simple, and, in contrast with the standard

cases, the supersymmetry transformations close off shell without auxiliary

fields.

The field content compares with that of the standard supergravities in

D 5 5, 7, 11 as shown in Table II.

Table II

Standard

D supergravity CS supergravity

5 ea
m c a

m c a m ea
m v ab

m c a
m c a m b

7 ea
m A [3] c a i

m ai
m j l a f ea

m v ab
m c a i

m ai
m j

11 ea
m A [3] c a

m ea
m v ab

m c a
m babcde

m
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Some sector of these theories might be related to the standard supergravi-

ties if one identifies the totally antisymmetric part of the contorsion tensor

in a coordinate basis, k m n l , with the Abelian 3-form, A[3]. In 11 dimensions

one could also identify the antisymmetric part of b with an Abelian 6-form

A[6], whose exterior derivative dA [6], is the dual of F[4] 5 dA [3]. Hence, in

D 5 11 the CS theory possibly contains the standard supergravity as well as

some kind of dual version of it [37, 38].

The field equations for these theories take the form

^ Fn 2 1 GA & 5 0 (34)

where GA are the generators of the superalgebra (see Appendix C). Spreading

out these equations in terms of the Lorentz components ( v , e, b, a, c ) produces

somewhat involved expressions. It is therefore reassuring to verify that in

all these theories the anti-de Sitter space is a fully SUSY background, and

that for c 5 b 5 a 5 0 there exist spherically symmetric, asymptotically

adS standard black-hole solutions of the class discussed in ref. 23 as well as

topological black holes of the type discussed in ref. 39. As will be discussed

in a forthcoming paper, for the extreme cases, these solutions are also BPS

states [40].

It would be natural to inquire about the stability or positivity of the

energy for the linearized excitations around these or other solutions. This

problem, however, is highly nontrivial. As shown in ref. 4, the phase space

of a CS system splits up into separate regions where the symplectic form

has different rank with radically different dynamical content. Thus, each CS

action describes several distinct systems in fact. In a generic case (where the

rank of the symplectic structure is maximal) the numbers of bosonic and

fermionic degrees of freedom do not matchÐ as it is also found in ref. 41Ð so

the system cannot be naively related to a standard SUGRA [42].

It is possible to incorporate matter into these theories through a minimal

coupling A. This case has been recently discussed by Horava [43]. The matter

currents must have equal-time commutators obeying the superalgebras above,

which are typical for a system of extended objects. For D 5 11, for example,

the matter content is that of a theory with (super-) 0-, 2-, and 5-branes, whose

respective worldhistories couple to the spin connection and the b fields.

Very recently a number of papers have appeared dealing with 11-dimen-

sional CS theories and OSp(32 | 1) [37, 38, 43±45]. In [43, 45], an interesting

suggestion is given on how standard SUGRA could be obtained from a

C-S theory of the type discussed here.
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APPENDIX A. CHERN± SIMONS ACTION FOR D 5 2n 2 1

Consider the (2n 2 1)-dimensional CS Lagrangian defined by Eq. (14),

dL
g
2n 2 1 5 ^ Fn & (35)

Integrating this equation, we can write L as [46, 47]

L 5
1

(n 1 1)! #
1

0

dt ^ A Ù (tdA 1 t2A Ù A)n 2 1 & 1 a (36)

where a is an arbitrary closed (2n 2 1)-form (d a 5 0).

Under a gauge transformation defined by a group element g(x), the

connection transforms as

A ® Ag 5 g 2 1Ag 1 g 2 1dg (37)

The corresponding change in the Chern±Simons form is

Lg 5 L 1 d b 1 ( 2 1)n 2 1 n! (n 2 1)!

(2n 2 1)!
^ (g 2 1dg)2n 2 1 & (38)

where the 2(n 2 1)-form b is a function of A, and depends on g through

the combination g 2 1dg. Thus, the action

ICS 5 # S

L (39)

which describes a gauge theory for the group G, changes under a finite gauge

transformation as the integral of (38), where the second term is a boundary

term, and the third is proportional to the winding number.

One can see from (35) that under an infinitesimal gauge transformation
(connected to the identity), the variation of L is a total derivative,

d l A 5 ¹ l (40)

where l is an arbitrary algebra-valued zero-form and ¹ l 5 d l 1 [A, l ]. In

fact, the R.H.S. of (35) is invariant under (40), e.g., d L is an exact form.

APPENDIX B. EXTENDED SUPERALGEBRAS

Let us look for the smallest supersymmetric extension of the anti-

de Sitter algebra in dimension D. The strategy is as follows: The graded

algebra will necessarily be of the form

[B, B] , B

[B, F ] , F (41)
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{F, F } , B

where the bosonic subalgebra is assumed to contain the generators of the

adS group. The fermionic generators, on the other hand, must be in a spin-

1/2 representation of the Lorentz group. The question now is, what is the
minimal number of additional generators that is necessary to close the algebra?

As was shown by van Holten and Van Proeyen [12], it is possible to construct

the N 5 1 supersymmetric extensions of adS for D 5 2, 3, 4 mod 8, but not

for the remaining dimensions. Here we show that by relaxing the N 5 1

condition it is possible to extend the result for the other cases.
In ref. 12, the result is found by imposing the Jacobi identity for the

algebra (41). We will derive the same result and its extension by demanding

that certain matrices constructed from Lorentz-invariant tensors form a repre-

sentation of the algebra in a trivial way. This procedure excludes the excep-

tional supergroups from our analysis; however, there is only one case in

which an exceptional supergroup is related to adS, that is, F(4) for (D 5
6) [29].

We will suppose that fermionic generators (F ) are in the spin-1/2 repre-

sentation of the Lorentz group,

F , Q a
i , a 5 1, . . . , m; i 5 1, . . . , N (42)

where m 5 2[D/2], N is the number of supersymmetric generators, and i is an

internal index unrelated to the Lorentz group.

In accordance with (41), we expect the generators of the adS group to

be contained in the R.H.S. of the third anticommutator. A simple way to
achieve this is by using the spinorial representation for the adS algebra

Ja 5 G a
(43)

Jab 5
1

2
G ab

Additional constraints can be imposed on the spinors Q in order to

produce smaller supersymmetric extensions of adS. There are only two restric-

tions compatible with Lorentz invariance (see, e.g., ref. 48): definite chirality

(the Q’ s are Weyl spinors), and ª realityº (Majorana spinors). Chirality is only
defined for even D. Here we shall not require chirality, but we demand the

spinors to satisfy the following reality condition (modified Majorana spinors):

c a
i 5 C a b uij c i

b (44)

which can be imposed for any D, provided the spacetime signature is s 2
t 5 0, 1, 2, 6, 7 mod 8 [48]. Here C and u are invertible matrices, the charge

conjugation matrix and the invariant metric of the internal symmetry group,
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respectively. Their inverses are defined with raised and lowered indices,

respectively,

C a b C b g 5 d g
a (45)

uijujk 5 d i
k

Without loss of generality, these metrics can be assumed to possess

definite symmetry properties

C g b 5 l C b g , ulk 5 m ukl (46)

with l , m 5 6 1. The charge conjugation matrix is defined so that

( G a)T 5 h C G aC 2 1 with h 2 5 1 (47)

An appropriate representation of the algebra (41) in which the fermionic
generators satisfy the reality condition (44) is

Qk
g 5 F 0 d a

g d k
j

2 C g b uki 0 G (48)

while the bosonic generators (B) are accommodated in the diagonal m 3 m
and N 3 N blocks,

B , F (G(k))
a
b 0

0 (Mkl)
i
j G (49)

The anticommutator of the fermionic generators (48) gives

{Qk
g , Ql

r }

5 2 F ulk(C r b d a
g 1 m C g b d a

r )

C g r (uki d l
j 1 l uli d k

j ) G (50)

The upper diagonal block on the R.H.S. can be expanded in a complete set

of m 3 m matrices in the form

C r b d a
g 1 m C g b d a

r 5 A(k)
g r ( G (k))

a
b (51)

where G (k) stands for

1

k!
d a1...ak

b1...bk G
b1 . . . G bk, 0 # k # D

and we have used the fact that the antisymmetric product of G ’ s is a basis

of Mm 3 m.

For each pair of indices ( g , r ) the index a can be lowered in (51)

multiplying by C. The result is a matrix with the same symmetry as u,
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[C{Qk
g , Q l

r }] a b 5 m [C{Qk
g , Ql

r }] b a (52)

On the other hand, the symmetry of C G (r) depends on the sign of l . In

fact, from (47), it is easily seen that

(C G a)T 5 h l C G a (53)

(C G ab)T 5 2 l C G ab (54)

This implies that both C G a and C G ab have the same symmetryÐ opposite to

that of CÐ only for h 5 2 1. Furthermore, from this and (52), one concludes
that the adS generators can occur on the R.H.S. of (50) if and only if

l m 5 h 5 2 1 (55)

It can be shown that for each dimension there are always two possible

representations for the charge conjugation matrix (C1 5 G 1 G 3 . . . , C2 5 G 2 G 4

. . .). It is easy to see that the signs of l fixed for all dimensions except for
D 5 2 mod 4. For odd dimensions, h 5 ( 2 1)(D 2 1)/2, while for each even

dimension h 5 6 1, with h l 5 ( 2 1)[(D 2 2)/4].

Thus, except for D 5 4k 1 1, C can always be chosen so that h 5 2 1

and this uniquely fixes l and m . If m 5 1, u is a symmetric quadratic form

and hence the internal group is SO(N ). Conversely, for m 5 2 1 the group

is Sp(N ). Correspondingly, if l 5 2 1, the only matrices that enter on the
R.H.S. of (51) are those for which C G is symmetric, which is a basis for

sp(m). Conversely, if l 5 1 1, C G is antisymmetric and the R.H.S. of (51)

spans so(m).

The semisimple algebras containing adS as a subalgebra in the bosonic

sector would then be osp(m | N ) for D 5 2, 3, 4 mod 8, and osp(N | m) (with

even N ) for D 5 6, 7, 8 mod 8. Their minimal extensions are osp(m | 1) and
osp(2 | m), respectively.

The only exceptional case for which the representation (48) would not

be appropriate occurs for D 5 5 mod 4. In this case h 5 1 1 and therefore

the anticommutator of two Q’ s of the form (48) would only contain either G a

or G ab, but not both, and therefore it would not correspond to a supersymmetric
extension of adS. In this case, the analysis is best carried out using complex

Dirac spinors. One can repeat the previous construction, but taking the fermi-

onic generators of the superalgebra in the complex representation

QÅ l
g 5 F 0 d a

g d l
i

0 0 G (56)

Q r k 5 F 0 0

2 G r b d i
k 0 G (57)
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where G is the Dirac conjugation matrix (for Minkowskian signature, G 5
G 0). Now the anticommutator of Q’ s does not have a definite symmetry. In

this case, the charge conjugation matrix can be chosen to be antihermitian
and the upper block of {QÅ , Q} closes on the unitary algebra u(m 2 2, 2),

while the lower block spans u(N ). Thus, for D 5 5 mod 4, the superalgebra

is u(m 2 2, 2 | N ), whose minimal extension is su(m 2 2, 2 | 1).

The previous discussion can be summarized in Table III.3

We indicate in brackets the alternative choices that satisfy l m 5 2 1,

but h 5 1 1. The corresponding supersymmetric theories do not have both
the generator Ja in the bosonic sector and therefore the contact with gravity

would be less transparent. Note that these ª pseudo supergravitiesº exist for

all even dimensions. Their algebras are different from those of the ª real

supergravitiesº for D 5 2 mod 4, but are the same for D 5 4 mod 4.

For D Þ 5 mod 4, the bosonic generators take the form

J(k) 5 F 1±2 ( G (k))
a
b 0

0 0 G (58)

M kl 5 F 0 0

0 (mkl)i
j G (59)

Table III

D l h m Superalgebras

2 2 1 [ 1 1] 2 1 [ 1 1] 1 1 [ 2 1] osp(2 | N ) [osp(N | 2)]

3 2 1 2 1 1 1 osp(2 | N )

4 2 1 2 1 [ 1 1] 1 1 osp(4 | N )

5 2 1 1 1 1 1 u(4 | N )

6 1 1 [ 2 1] 2 1 [ 1 1] 2 1 [ 1 1] osp(N | 8) [osp(8 | N )]

7 1 1 2 1 2 1 osp(N | 8)

8 1 1 2 1 [ 1 1] 2 1 osp(N | 16)

9 1 1 1 1 2 1 u(16 | N )

10 2 1 [ 1 1] 2 1 [ 1 1] 1 1 [ 2 1] osp(32 | N ) [osp(N | 32)]

11 2 1 2 1 1 1 osp(32 | N )

12 2 1 2 1 [ 1 1] 1 1 osp(64 | N )

? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

3 A special case occurs for D 5 3, where we have defined the supergroup as osp(2 | 1) only for
completeness of the table. This group does not contain the generator of adS and, strictly
speaking, one should have written osp(2 | 1) ^ sp(2) instead.
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with (mkl)i
j 5 uki d l

j 1 l uli d k
f . The superalgebra now reads

[J( p), J(q)] 5 f ( p)(q)
(r) J (r)

[J( p), M jl] 5 0

[J( p), Ql
a ] 5

1

2
( G (p)) b

a Ql
b (60)

[M ij, M kl] 5 f ijkl
hmM hm

[M jk, Q l
a ] 5 (m jk)l

iQ
i
a

{Qk
g , Ql

r } 5
4

m
ulk(C G ( p)) g r J( p) 2 C g r M kl

APPENDIX C. EQUATIONS OF MOTION

Let V be a 2n-dimensional manifold with boundary - V 5 S . Then, by

Stokes’ theorem the action can be written as

Ics 5 # S

L 5 # V

dL 5 # V

^ Fn & (61)

Varying I with respect to the connection, using d F 5 ¹ d A and the

Bianchi identity ¹ F 5 0, we obtain

d Ics 5 n # V

^ ¹ ( d A) Ù Fn 2 1 & 5 n # V

d ^ d A Ù F n 2 1 & (62)

Using Stokes’ theorem again, we obtain

d Ics 5 n # S

d AB Ù ^ GBF n 2 1 & (63)

Thus, the equations of motion are

^ Fn 2 1 GB & 5 0 (64)

These equations provide a representation of the supergravity algebra.

Suppose the superalgebra has generators GA 5 {Ba; Q a }, with a graded

commutator algebra of the form

[Ba , Bb] 5 C c
ab Bc

[Ba , Q b ] 5 C g
a b Q g (65)

{Q a , Q b } 5 C c
a b Bc
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The connection associated to this algebra is A 5 W aBa 1 C a Q a 5
W 1 C . Calling D the covariant derivative restricted to the bosonic subgroup

generated by Ba , by virtue of the Bianchi identity ¹ F 5 0, we obtain

DF 5 [F, C ] (66)

Varying the action with respect to the connection d A 5 d W 1 d C yields

the field equations

d W: ^ Fn 2 1Ba & 5 0 (67)

d C : ^ Fn 2 1Q a & 5 0

Acting with D on the fermionic equation gives

D ^ Fn 2 1Q a & 5 ^ D(Fn 2 1)Q a & 5 ^ Fn 2 1{ C , Q a } & 5 0 (68)

where we have used (66) and the symmetry property of the bracket. Since
{ C , Q b } 5 C a {Q a , Q b } 5 C a Cc

a b Bc, the consistency condition is

^ Fn 2 1Bc & Cc
a b C a 5 0 (69)

Supposing that C a is an arbitrary solution of the fermionic field equa-
tions, we conclude that

^ Fn 2 1Bc & Cc
a b 5 0 (70)

Thus, the consistency conditions associated with the fermionic equations
do not produce additional restrictions on the theory. They are a subset of the

bosonic field equations. If the structure constants Cc
a b were nonzero, the

complete set of bosonic equations would enter in Eq. (70). The preceding

analysis of the integrability conditions holds equally for Chern±Simons super-

gravities as for a standard supersymmetric theory.

APPENDIX D. CONTRACTION OF SUPER-ADS

In ref. 11 a family of CS theories was constructed for supersymmetric

extensions of the PoincareÂalgebra of the form (7),

{Q a , QÅ
b } 5 2 i( G a) a

b Pa 2 i( G abcde) a
b Zabcde (71)

It is possible to obtain this algebra by an appropriate contraction of the

N 5 2 superextension of an adS algebra, in the limit of vanishing cosmological

constant. Let us define
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TM 5 1
Ja

Jab

Jabcde

Z(m)

Q

QÅ

M ij 2 (72)

where Z(m) stands for all the J(m) with m Þ 1, 2, 5, and Q 5 Q1 1 iQ2, QÅ 5
Q1 2 iQ2. Consider now the contraction of the form T 8M 5 UK

M( e )TK, where

UK
M( e ) 5 F fp( e )

1

fk( e )

1

fq( ! e )

fq( ! e )

1 G (73)

Here fx( a ) 5 a ((1 2 x) a 1 x), so that fx(1) 5 1 and lim a ® 0 fx( a ) , x a .

Thus, it can be easily checked that for e ® 0 the generators T8M satisfy a

closed superalgebra, where the only nonvanishing anticommutator is of the
form (71),

{Q8, QÅ 8} 5
4q2

m 1 G a

p
J8a 1

G abcde

k
J8abcde 2 (74)

The dimensionless parameters q, p, k can be eliminated by rescaling the

gauge fields. They can also be interpreted as coupling constants in the resulting

gauge theory.

It is remarkable that for D 5 3, 5, 7, 11, it is always possible to contract

the algebra so that the internal gauge group M generated by Mij decouples
from the PoincareÂgenerators. If we call G the group generated by (71), the

contraction produces a semidirect product G ( M, where the only nonvan-

ishing commutator is

[Q8 a
k , M ij ] 5 d a

b cl
ijkQ8 b

l (75)

For D 5 9 and D . 11, on the other hand, the contraction contains G ( M
as a proper subgroup, since the generators Z(m) carry vector indices, and
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therefore cannot be contained in M.4 It is then reasonable to expect that, in

analogy with what happens in three-dimensional gravity, the CS PoincareÂ

supergravity theories of ref. 11 could be obtained from a contraction of the
CS adS supergravities.
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